
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 21 November 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 9 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 28 November 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 9.1 Party & Beer & Party & Beer.

For your birthday, you organize a party and invite some friends over at your place. Some of your friends
bring their partners, and it turns out that in the end everybody (including yourself) knows exactly 7
other people at the party (note that the relation of knowing someone is commutative, i.e. if you know
someone then this person also knows you and vice versa). Show that there must be an even number of
people at your party.

Exercise 9.2 Transitive graphs (1 point).

We say that a graph G = (V,E) is

• transitive when, for any two edges {u, v} and {v, w} in E, the edge {u,w} is also in E;

• complete when its set of edges is {{u, v} | u, v ∈ V, u 6= v};

• the disjoint sum of G1 = (V1, E1), . . . , Gk = (Vk, Ek) i� V = V1∪· · ·∪Vk, E = E1∪· · ·∪Ek,
and the (Vi)1≤i≤k are pairwise disjoint.

Show that a graph is transitive if, and only if, it is a disjoint sum of complete graphs.

Exercise 9.3 Star search, reloaded (1 point).

A star in an undirected graphG = (V,E) is a vertex that is adjacent to all other vertices. More formally,
v ∈ V is a star if and only if {{v, w} | w ∈ V \ {v}} ⊆ E.

In this exercise, we want to �nd a star in a graph G by walking through it. Initially, we are located at
some vertex v0 ∈ V . Each vertex has an associated �ag (a Boolean) that is initially set to False. We
have access to the following constant-time operations:

• countNeighbors() returns the number of neighbors of the current vertex

• moveTo(i)moves us to the ith neighbor of the current vertex, where i ∈ {1..countNeighbors()}

• setFlag() sets the �ag of the current vertex to True

• isSet() returns the value of the �ag of the current vertex

• undo() undoes the latest action performed(the movement or the se�ing of last �ag)

Assume that G has exactly one star and |G| = n. Give the pseudocode of an algorithm that �nds the
star, i.e., your algorithm should always terminate in a con�guration where the current vertex is a star
in G. To obtain full points, your algorithm must have complexity O(|V |+ |E|), and must not introduce
any additional datastructures (no sets, no lists etc.). Show that your algorithm is correct and prove its
complexity. �e behavior of your algorithm on graphs that do not contain a star can be disregarded.

Exercise 9.4 Domino.

(a) A domino set consists of all possible
(
6
2

)
+ 6 = 21 di�erent tiles of the form [x|y], where x and y

are numbers from {1, 2, 3, 4, 5, 6}. �e tiles are symmetric, so [x|y] and [y|x] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide.

(b) What happens if we replace 6 by an arbitrary n ≥ 2? For which n is it possible to line up all
(
n
2

)
+n

di�erent tiles along a line?

Exercise 9.5 Introduction to Trees (1 point).

We start with a few de�nitions:

De�nition 1. Let G = (V,E) be a graph.

• A sequence of vertices (v0, v1, . . . , vk) (with vi ∈ V for all i) is a simple path i� all the vertices
are distinct (i.e., vi 6= vj for 0 ≤ i < j ≤ k) and {vi, vi+1} is an edge for each 0 ≤ i ≤ k− 1. We
say that v0 and vk are the endpoints of the path.

• A sequence of vertices (v0, v1, . . . , vk) (with vi ∈ V for all i) is a simple cycle i� (1) v0 = vk,
(2) all other vertices are distinct (i.e., vi 6= vj for 0 ≤ i < j < k), and (3) {vi, vi+1} is an edge for
each 0 ≤ i ≤ k − 1.

• A graph G is connected i� for every two vertices u, v ∈ V there exists a simple path with
endpoints u and v.

• A graph G is a tree i� it is connected and has no simple cycles.

In this exercise the goal is to prove a few basic properties of trees.

(a) A leaf is a vertex with degree 1. Prove that in every tree G there exists a leaf.

Hint: Consider the longest simple path in G. Prove that its endpoint is a leaf.

(b) Prove that every tree with n vertices has exactly n− 1 edges.

Hint: Prove by using induction on n. In the inductive step, use part (a) to �nd a leaf. Disconnect the
leaf from the tree and argue the remaining subgraph is also a tree. Apply the inductive hypothesis and
conclude.

(c) Prove that a graph with n vertices is a tree i� it has n− 1 edges and is connected.

2

Hint: One direction is immediate by part (c). For the other direction (every connected graph with n−1
edges is a tree), use induction on n. First, prove there always exists a leaf by considering the average
degree. �en, disconnect the leaf from the graph and argue the remaining graph is still connected and
has exactly one less edge. Apply the inductive hypothesis and conclude.

(d) Write the pseudocode of an algorithm that is given a graph G as input and checks whether G is a
tree.

As input, you can assume that the algorithm has access to the number of vertices n, the number
of edges m, and to the edges {a1, b1}, {a2, b2}, . . . , {am, bm} (i.e., the algorithm has access to 2m
integers a1, . . . , am, b1, . . . , bm, where each edge of G is given by its endpoints ai and bi). You can
assume that the graph is valid (speci�cally, 1 ≤ ai, bi ≤ n and ai 6= bi). �e algorithm outputs
“YES” or “NO”, corresponding to whether G is a tree or not. Your algorithm must always complete
in time polynomial in n (e.g., even O(n10m10) su�ces).

Hint: Use part (c). �ere exists a (relatively) simple O(n+m) solution. However, the o�cial solution
is O(n ·m) for brevity and uses recursion to check if G is connected.

Example 1: n = 6
m = 5
a1, b1 = 1, 3
a2, b2 = 6, 1
a3, b3 = 3, 5
a4, b4 = 2, 3
a5, b5 = 4, 1

3

1

6 4

5 2

Output: YES

Example 2: n = 5
m = 4
a1, b1 = 1, 3
a2, b2 = 4, 5
a3, b3 = 5, 2
a4, b4 = 2, 4

4 5

2

3 1

Output: NO

3

